Publications et brevets

  • Mechtouff L et al; Matrix Metalloproteinase-9 Relationship With Infarct Growth and Hemorrhagic Transformation in the Era of Thrombectomy; Frontiers in neurology; 10.3389/fneur.2020.00473; 2020
  • Lasolle H et al; Centralization errors in comparative genomic hybridization array analysis of pituitary tumor samples; Genes Chromosomes Cancer ; 00:1-9; 2018
  • Wierinckx A et al; Sex-Related Differences in Lactotroph Tumor Aggressiveness Are Associated With a Specific Gene-Expression Signature and Genome Instability; Frontiers in Endocrinology; Volume 9 article 706; 2018
  • Principe M, et al; ALK7 expression in prolactinoma is associated with reduced prolactin and increased proliferation; Endocrinology-journals; 25:9, 795-806; 2018
  • Trouillas J et al; A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up; Acta Neuropathol; 126(1):123-35; 2013
  • Jouanneau E et al; New targeted therapies in pituitary carcinoma resistant to temozolomide; Pituitary; 15 : 37-43; 2012
  • Wierinckx A et al; Integrated Genomic Profiling Identifies Loss of Chromosome 11p Impacting Transcriptomic Activity in Aggressive Pituitary PRL Tumors; Brain Pathol; ISSN 1015-6305; 2011
  • Raverot G et al; Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up.; Clin Endocrinol Metab; 95(4):1708-16; 2010
  • Raverot G et al; Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing's disease.; Eur J Endocrinol; 163(1):35-43; 2010
  • Wierinckx A et al; A diagnostic marker set for invasion, proliferation and aggressiveness of prolactine pituitary tumors.; Endocrin related Cancer; 14 : 887-890; 2007
  • Bachelard-Cascales E, et al; The CD10 enzyme is a key player to identify and regulate human mammary stem cells.; Stem Cells; Jun;28(6):1081-8.; 2010
  • Wager M et al; Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients; Br J Cancer.; Oct 23;95(8):1062-9; 2006
  • Bochaton T. et al; Heat Shock Protein 70 as a Biomarker of Clinical Outcomes After STEMI; J Am Coll Cardiol; 7;75(1):122-124; 2020
  • Bernelin H. et al; Neprilysin levels at the acute phase of ST-elevation myocardial infarction and relationship with infarct size and adverse outcomes; Clin Cardiol ; 10.1002/clc.23090; 2018
  • Bochaton T. et al; Early kinetics of Serum Interleukine-17A and infarct size in patients with reperfused acute ST-elevated myocardial infarction; PLOS ONE; November 22; 2017
  • Bolze PA, et al; Création d'une biobanque nationale pour l'étude des maladies trophoblastiques gestationnelles; J Gynecol Obstet Biol Reprod (Paris) ; http:// dx.doi.org/10,1016/j.jgy; 2015
  • Devic P, et al; Antibodies to clustered acetylcholine receptor: expanding the phenotype.; Eur J Neurol; 21(1):130-4; 2014
  • Cobo-Calvo A, et al; Frequency of myelin oligodendrocyte glycoprotein antibody in multiple sclerosis; Neurol Neuroimmunol Neuroinflamm 2020;7:e649. ; NXI.0000000000000649; 2020
  • Cobo-Calvo A, et al; Cranial nerve involvement in patients with MOG antibody–associated disease; Neurol Neuroimmunol Neuroinflamm.; 10.1212/NXI.0000000000000543; 2019
  • Nicolas P, et al; The Balance in T Follicular Helper Cell Subsets Is Altered in Neuromyelitis Optica Spectrum Disorder Patients and Restored by Rituximab; Front Immunol. 2019 Nov 19;10:2686. ; doi: 10.3389/fimmu.2019.02686; 2019
  • Cobo-Calvo A, et al; Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease.; J Neuroinflammation. 2019 Jul 2;16(1):134. ; doi: 10.1186/s12974-019-1525-1.; 2019
  • Cobo-Calvo A, et al; Usefulness of MOG-antibody titres at first episode to predict the future clinical course in adults.; J Neurol. 2019 Apr;266(4):806-815; doi: 10.1007/s00415-018-9160-9; 2019
  • Waters P. et al; Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica; Neurosurg Psychiatry ; 0:1–11. doi:10.1136/jnnp-2015-; 2016
  • Montcuquet A, Collongues N, Papeix C, Zephir H, Audoin B, Laplau; Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders; DOI: 10.1177 Mult Scler; 1352458516678474; 2016
  • Marignier R. et al; Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid; J. Neuroinflamm; 13:111 DOI 10.1186; 2016
  • Schanda K, et al; Antibodies to aquaporin-1 are not present in neuromyelitis optica; Neuroimmunol Neuroinflamm; Oct 1;2(6):e160; 2015
  • Cobo-Calvo Á, et al; Antibodies to myelin oligodendrocyte glycoprotein in aquaporin 4 antibody seronegative longitudinally extensive transverse myelitis: Clinical and prognostic implications; Mult Scler; 1352458515591071; 2015
  • Hanouxa V, et al; No evidence for genetic association between glutamate transporter EAAT2 and Devic's neuromyelitis optica in caucasians and afro-caribbeans; Multiple SclerosisandRelatedDisorders; (2014) 3, 89–93; 2014
  • Marignier R, et al; Aquaporin-4 antibody-negative neuromyelitis optica: Distinct assay sensitivity-dependent entity; Neurology; 80(24):2194-200. doi: 10.1212/WN; 2013
  • Höftberger R, et al; An Optimized Immunohistochemistry Technique Improves NMO-IgG Detection: Study Comparison with Cell-Based Assays; PLoS One; 2013; 8(11): e79083; 2013
  • Mithu Storoni, et al; Serum GFAP levels in optic neuropathies; J Neurol Sci ; doi:10.1016/j.jns.2012.02.012; 2012
  • Marignier R, et al; Oligodendrocytes are damaged by Neuromyelitis Optica immunoglobulin G via astrocyte injury; Brain; Aug 5; 1-14; 2010
  • Petzold A, et al; Glial but not axonal protein biomarkers as a new supportive diagnostic criteria for Devic’s neuromyelitis optica ? Preliminary results on 188 patients with different neurological diseases; Journal of Neurology Neurosurgery and Psychiatry; Jul 28; 2010
  • Zéphir H, et al; Is neuromyelitis optica associated with human leukocyte antigen?; Mult Scler; May;15(5):571-9; 2009
  • Marignier R, et al; MO-IgG and Devic's neuromyelitis optica : a French experience; Multiple sclerosis; 14(4):440-5; 2008
  • Vandenberghe N, et al; Cerebrospinal fluid detection of enterovirus genome in ALS : A study of 242 patients and 354 controls; Amyotroph Lateral Scler. ; May 3;11(3):277-82,; 2010
  • Fuchs NV et al; Induced pluripotent stem cells (iPSCs) derived from a renpenning syndrome patient with c.459_462delAGAG mutation in PQBP1 (PEIi001-A); Stem Cell Res. 2019 Dec;41:101592; 10.1016/j.scr.2019.101592.; 2019
  • Yoh SM, Scheinder M et al; PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1; Cell; Volume 161, Issue 6 Pages 1293&l; 2015
  • Vukusic S, et al; Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France.; Mult Scler; 10.1177/1352458518815602; 2018
  • Kuhle J, et al; Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study.; Mult Scler; 2015 Jul;21(8):1013-24. doi: 10.; 2015
  • N. Schwab et al; PML risk stratification using anti-JCV antibody index and L-selectin ? ; Multiple Sclerosis; DOI: 10.1177/ 1352458515607651; 2015
  • Marignier R, et al; Metabotropic Glutamate Recepttor Type 1 Autoantibody-Associated Cerebellitis. A primary autoimmune disease ?; Arch Neurol; 67 : 627-630; 2010
  • Vincent P, et al; A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration.; J Immunol; 175 : 7650-60; 2005
  • Déchelotte B et al; Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes.; Neurol Neuroimmunol Neuroinflamm. 2020 Mar 13;7(3); 10.1212/NXI.0000000000000701; 2020
  • Simard C et al; Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies.; Neurol Neuroimmunol Neuroinflamm. 2020 Mar 13;7(3). pii: e699; 10.1212/NXI.0000000000000699; 2020
  • Muñiz-Castrillo S et al; Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies.; J Neurol. 2020 Mar 9; 10.1007/s00415-020-09782-8.; 2020
  • Muñiz-Castrillo S et al; Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies.; J Neurol. 2020 Mar 9; 10.1007/s00415-020-09782-8.; 2020
  • Vogrig A. et al; Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors; Neurol Neuroimmunol Neuroinflamm; 10.1212/NXI.0000000000000604; 2019
  • Vogrig A, et al; Motor neuron involvement in anti-Ma2-associated paraneoplastic neurological syndrome; Journal of Neurology; 10.1007/s00415-018-9143-x; 2018
  • Maureille A et al; Isolated seizures are a common early feature of paraneoplastic anti- GABAB receptor encephalitis; Journal of neurology; 10.1007/s00415-018-9132-0; 2018
  • Belbezier A, et al; Multiplex family with GAD65-Abs neurologic syndromes; Neurology; 10.1212/NXI.0000000000000416; 2018
  • Duy Do L, et al; TRIM9 and TRIM67 Are New Targets in Paraneoplastic Cerebellar Degeneration; The Cerebellum; 10.1007/s12311-018-0987-5; 2018
  • Small M et al; Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration; Acta Neuropathol; Jan 3; 2018
  • Duy Do L, et al; Characteristics in limbic encephalitis with anti–adenylate kinase 5 autoantibodies; Neurology; 88(6):514-524; 2017
  • Joubert B, et al; Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms and seizures; the Journal of American Medical Association Neurology; doi:10.1001/jamaneurol.2016.1585; 2016
  • Laurencin C, André-Obadia N, et al; Peripheral small fiber dysfunction and neuropathic pain in patients with Morvan syndrome.; Neurology; 8;85(23):2076-8; 2015
  • Desestret V, Chefdeville A, et al, ; CSF IgA NMDAR antibodies are potential biomarkers for teratomas in anti-NMDAR encephalitis; Neurology-Neuroimmunology Neuroinflammation; 2(6), e166; 2015
  • Probst C,et al; Standardized test for anti-Tr/DNER in patients with paraneoplastic cerebellar degeneration; Neurol Neuroimmunol Neuroinflamm; Feb 26;2(2):e68; 2015
  • Manto M, et al; Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioural functions ; Front Behav Neurosci; Mar 27;9:78; 2015
  • Pinatel D,et al; Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis; Front Cell Neurosci; Jul 9;9:265.; 2015
  • Dupuis JP, et al; Surface dynamics of GluN2B‐NMDA receptors controls plasticity of maturing glutamate synapses; The EMBO Journal; Apr 16;33(8):842-61; 2014
  • Viaccoz A, et al; Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis; Neurology; Volume 82(7), 18 February, p 55; 2014
  • Ducray F, et al; Seronegative paraneoplastic cerebellar degeneration: the PNS Euronetwork experience.; Eur J Neurol; May;21(5):731-5; 2014
  • Honnorat J, et al; Autoimmune limbic encephalopathy and anti-Hu antibodies in children without cancer; Neurology; 80:1–7; 2013
  • Choumert A, et al; G303V Tau Mutation Presenting with Progressive Supranuclear Palsy–Like Features; Movement Disorders; Volume 27, Issue 4, pages 581; 2012
  • Mikasova L, et al; Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis.; Brain; May;135(Pt 5):1606-21.; 2012
  • Manto MU, et al; Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia ; Orphanet J Rare Dis; Feb 4;6:3; 2011
  • Manto MU et al, ; Afferent facilitation of corticomotor responses is increased by IgGs of patients with NMDA-receptor antibodies; J Neurol; 258:27–33; 2011
  • De Graaf MT, et al; HLA-DQ2+ individuals are susceptible to Hu-Ab associated paraneoplastic neurological syndromes; J Neuroimmunol; Sep 14;226(1-2):147-9; 2010
  • Manto MU, et al ; In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction; Orphanet Journal of Rare Diseases ; Nov 26;5:31; 2010
  • Manto MU, et al; Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases.; Annal of neurology; 61(6):544-51; 2007
  • Ranaldi S, et al; N-truncated Ab peptides in complex fluids unraveled by new specific immunoassays; Neurobiology of Aging ; 34; 523–539; 2013
  • Roubaud-Baudron C, et al; Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results.; Neurobiology of Aging; 33 (2012) ; 2012
  • Ryan K. Li et all; Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study; Acta Neuropathologica; s00401-019-02111-y; 2019
  • D'Angelo F, et al; The molecular landscape of glioma in patients with Neurofibromatosis; Nature medicine; 10.1038/s41591-018-0263-8; 2018
  • Appay R, et al; Somatostatin receptor 2A protein expression characterizes anaplastic oligodendrogliomas with favorable outcome; Acta Neuropathol; 10.1186/s40478-018-0594-1; 2018
  • Alentorn A, et al; Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas ; Neurology; 85, october 13; 2015
  • Labreche K,et al; TCF12 is mutated in anaplastic oligodendroglioma; Nature Communication; 6:7207; 2015
  • Viotti J, et al; Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity; Oncogene; Apr 3;33(14):1764-75; 2014
  • Laffaire J, et al; An ANOCEF Genomic and Transcriptomic Microarray Study of the Response to Irinotecan and Bevacizumab in Recurrent Glioblastomas; BioMed Research International; Article ID 282815, 8 pages; 2014
  • Viotti J, et al ; Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity; Oncogene; 33, 1764–1775; 2014
  • Figarella-Branger D, et al; Mitotic index, microvascular proliferation, and necrosis define 3 groups of 1p/19q codeleted anaplastic oligodendrogliomas associated with different genomic alterations.; Neuro Oncol; Sep;16(9):1244-54. ; 2014
  • Idbaih A, et al; SNP Array Analysis Reveals Novel Genomic Abnormalities Including Copy Neutral Loss of Heterozygosity in Anaplastic Oligodendrogliomas; J Clin Oncol; Aug 10;31(23):2927-35.; 2013
  • Bertucci F, et al; Comprehensive Genome Characterization of Solitary Fibrous Tumors Using High-Resolution Array-based Comparative Genomic Hybridization; GENES, CHROMOSOMES & CANCER; 52:156–164 ; 2013
  • Bouvier C, et al; ALDH1 is an immunohistochemical diagnostic marker for solitary fibrous tumours and haemangiopericytomas of the meninges emerging from gene profiling study; Acta Neuropathologica Communications; May 9;1:10. doi: 10.1186/2051-59; 2013
  • Remke M, et al ; TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma; Acta Neuropathol ; 126:917–929; 2013
  • Vasiljevic, A et al; Molecular characterization of central neurocytomas: Potential markers for tumor typing and progression; Neuropathology; 33, 149–161; 2013
  • Reyes-Botero G, et al; Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression; Neuro-Oncology ; 00, 1–9, doi:10.1093/neuon; 2013
  • Brot S, et al; Identification of a new CRMP5 isoform present in the nucleus of cancer cells and enhancing their proliferation; Exp Cell Res; Mar 10;319(5):588-99; 2013
  • Paul A. et al; Subgroup-specific structural variation across 1,000 medulloblastoma genomes; Nature; VOL 488, 49; 2012
  • Idbaih A, et al; SNP Array Analysis Reveals Novel Genomic Abnormalities Including Copy Neutral Loss of Heterozygosity in Anaplastic Oligodendrogliomas; PLoS One; 7(10); 2012
  • Ginguene C, et al; P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) localize in the microvessels forming the blood-tumor barrier in ependymomas.; Brain Pathology ; ISSN 1015-6305, mar, 1-9; 2010
  • Montange M, et al ; Histopathology of tumors of the pineal region; Future Oncol; May;6(5):791-809.; 2010
  • Peyre M, et al; Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis.; PLoS One; Sep 24;5(9):e12932.; 2010
  • Fevre-Montange M,et al; Microarray gene expression profiling in meningiomes : differential expression according to grade or histopathological subtype; Int. J. Oncol.; 35 : 1395-1407,; 2009
  • Durand A et al.; Expression of c-Myc, neurofibromatosis Type 2, somatostatin receptor 2 and erb-B2 in human meningiomas: relation to grades or histotypes; Clin Neuropathol; 27(5):334-45; 2008
  • Fevre-Montange M, et al.; Histological features and expression of enzymes implicated in melatonin synthesis in pineal parenchymal tumours and in cultured tumoural pineal cells.; Neuropathology and Applied Neurobiology; 34 : 296-305; 2008
  • Balenci L. et al.; IQGAP1 Protein specifies amplifying cancer celles in glioblastoma multiforme; Cancer Res; 66, 9074-9082; 2006
  • Fêvre-Montange M et al.; Microarray analysis reveals differential gene expression patterns in tumors of the pineal region; J. Neuropathol. Exp. Neurol.; 65 : 675-684; 2006
  • Champier J. et al.; Identification of differentially expressed genes in human pineal parenchymal tumors by microarray analysis; Acta Neuropathol.; 109 : 306-313; 2005
  • Huang H. et al.; Gene expression profiling and subgroup identification of oligodendrogliomas; Oncogene; 23, 6012-6022; 2004
  • Champier J. et al.; Differential somatostatine receptor subtype expression in human normal pineal gland and pineal parenchymal tumors; Cell. Mol. Neurobiol.; 23 : 101-113; 2003
  • Brisson C. et al.; Establishement of human tumoral ependymal celllines and coculture with tubular-like human endothelial cells; Int. J. Oncol.; 21 : 775-785; 2002
  • Guyotat J. et al.; Differential expression of somatostatin receptors in meduloblastoma; J. Neuro-Oncol.; 51, 93-103; 2001
  • Guyotat J, et al; Differential expression of somatostatin receptors in ependymoma : implication for diagnosis, ; Int. J. Cancer ; 95,144-151; 2001
  • Clavreul, A et al; The French glioblastoma biobank (FGB): a national clinicobiological database; Journal of Translational Medicine; (2019) 17:133 ; 0
  • HCL, Université Claude Bernard, INSERM; Procédé de détermination in vitro de la présence d'une sclérose en plaques; 2011; 11 54138
  • HCL, INSERM; 'Utilisation des progéniteurs myéloïdes sanguin CD34 comme marqueur diagnostic des maladies neuro-inflammatoires; 2006; 123
  • (S Nataf, N Davoust , J Lachuer and MF Belin; Use of circulating microglial precursors for prognostic, diagnostic and therapy of neuroinflammation and cerebral tumors ; 2007; 06291163.1